Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847567

RESUMO

Three sisters, born from consanguineous parents, manifested a unique Müllerian anomaly characterized by uterine hypoplasia with thin estrogen-unresponsive endometrium and primary amenorrhea, but with spontaneous tubal pregnancies. Through whole-exome sequencing followed by comprehensive genetic analysis, a missense variant was identified in the OSR1 gene. We therefore investigated OSR1/OSR1 expression in postpubertal human uteri, and the prenatal and postnatal expression pattern of Osr1/Osr1 in murine developing Müllerian ducts (MDs) and endometrium, respectively. We then investigated whether Osr1 deletion would affect MD development, using WT and genetically engineered mice. Human uterine OSR1/OSR1 expression was found primarily in the endometrium. Mouse Osr1 was expressed prenatally in MDs and Wolffian ducts (WDs), from rostral to caudal segments, in E13.5 embryos. MDs and WDs were absent on the left side and MDs were rostrally truncated on the right side of E13.5 Osr1-/- embryos. Postnatally, Osr1 was expressed in mouse uteri throughout their lifespan, peaking at postnatal days 14 and 28. Osr1 protein was present primarily in uterine luminal and glandular epithelial cells and in the epithelial cells of mouse oviducts. Through this translational approach, we demonstrated that OSR1 in humans and mice is important for MD development and endometrial receptivity and may be implicated in uterine factor infertility.


Assuntos
Infertilidade , Ductos Paramesonéfricos , Animais , Feminino , Humanos , Camundongos , Gravidez , Endométrio , Células Epiteliais , Ductos Paramesonéfricos/metabolismo , Útero
2.
Mol Syndromol ; 13(4): 290-304, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36158055

RESUMO

WAGR syndrome (Wilms' tumor, aniridia, genitourinary changes, and intellectual disability) is a contiguous gene deletion syndrome characterized by the joint deletion of PAX6 and WT1 genes, located in the short arm of chromosome 11. However, most deletions include other genes, leading to multiple associated phenotypes. Therefore, understanding how genes deleted together can contribute to other clinical phenotypes is still considered a challenge. In order to establish genotype-phenotype correlation in patients with interstitial deletions of the short arm of chromosome 11, we selected 17 patients with deletions identified by chromosomal microarray analysis: 4 new subjects and 13 subjects previously described in the literature with detailed clinical data. Through the analysis of deleted regions and the phenotypic changes, it was possible to suggest the contribution of specific genes to several nonclassical phenotypes, contributing to the accuracy of clinical characterization of the syndrome and emphasizing the broad phenotypic spectrum found in the patients. This study reports the first patient with a PAX6 partial deletion who does not present any eye anomaly thus opening a new set of questions about the functional activity of PAX6.

3.
Mol Syndromol ; 10(4): 202-208, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31602192

RESUMO

Terminal microdeletions of the long arm of chromosome 6 are associated with a phenotype that includes multiple brain malformations, intellectual disability, and epilepsy. A 1.7-Mb region has been proposed to contain a gene responsible for the brain anomalies. Here, we present the case of a 12-year-old girl with multiple brain alterations and moderate intellectual disability with a 18-kb deletion in chromosome 6q27, which is smaller than the microdeletions previously described by microarray analysis. We refined the smallest region of overlap possibly associated with the phenotype of brain malformations and intellectual disability to a segment of 325 kb, comprising the DLL1, PSMB1, TBP, and PDCD2 genes since these genes were structurally and/or functionally lost in the smaller deletions described to date. We hypothesize that DLL1 is responsible for brain malformations and possibly interacts with other adjacent genes. The TBP gene encodes a transcription factor which is potentially related to cognitive development. TBP is linked to PSMB1 and PDCD2 in a conserved manner among mammals, suggesting a potential interaction between these genes. In conclusion, the 6q27 microdeletion is a complex syndrome with variable expressivity of brain malformations and intellectual disability phenotypes which are possibly triggered by the 4 genes described and adjacent genes susceptible to gene regulation changes.

4.
Mol Syndromol ; 10(4): 234-238, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31602198

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are a class of noncoding RNAs implicated in several biological processes. LincRNA 299 (LINC00299) maps to 2p25.1 and its function is still unknown. However, this gene has been proposed as a candidate for intellectual disability (ID) in a patient with a balanced translocation where the breakpoint disrupted its ORF. Here, we describe a new case of LINC00299 disruption associated with ID. The individual, a 42-year-old woman, was referred to the clinical geneticist because of her son who had severe syndromic ID. G-banding and chromosomal microarray analysis were performed. Karyotyping of the boy revealed an extranumerary derivative chromosome identified as an unbalanced translocation between chromosomes 2 and 9 of maternal origin. The mother's karyotype showed a balanced translocation 46,XX,t(2;9)(p25;q13). Chromosomal microarray indicated a disruption of LINC00299. These data corroborate the role of LINC00299 as a causative gene for ID and broadens the spectrum of LINC00299-related phenotypes.

5.
Cytogenet Genome Res ; 154(2): 62-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587261

RESUMO

Myelofibrosis is the rarest and most severe type of Philadelphia-negative classical myeloproliferative neoplasms. Although mutually exclusive driver mutations in JAK2, MPL, or CALR that activate JAK-STAT pathway have been related to the pathogenesis of the disease, chromosome abnormalities have also been associated with the phenotype and prognosis of the disease. Here, we report the use of a chromosomal microarray platform consisting of both oligo and SNP probes to improve the detection of chromosome abnormalities in patients with myelofibrosis. Sixteen patients with myelofibrosis were tested, and the results were compared to karyotype analysis. Driver mutations in JAK2, MPL, or CALR were investigated by PCR and MLPA. Conventional cytogenetics revealed chromosome abnormalities in 3 out of 16 cases (18.7%), while chromosomal microarray analysis detected copy-number variations (CNV) or copy-neutral loss of heterozygosity (CN-LOH) alterations in 11 out of 16 (68.7%) patients. These included 43 CN-LOH, 14 deletions, 1 trisomy, and 1 duplication. Ten patients showed multiple chromosomal abnormalities, varying from 2 to 13 CNVs or CN-LOHs. Mutational status for JAK2, CALR, and MPL by MLPA revealed a total of 3/16 (18.7%) patients positive for the JAK2 V617F mutation, 9 with CALR deletion or insertion and 1 positive for MPL mutation. Considering that most of the CNVs identified were smaller than the karyotype resolution and the high frequency of CN-LOHs in our study, we propose that chromosomal microarray platforms that combine oligos and SNP should be used as a first-tier genetic test in patients with myelofibrosis.


Assuntos
Cromossomos Humanos/genética , Perda de Heterozigosidade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mielofibrose Primária/genética , Adulto , Idoso , Calreticulina/genética , Variações do Número de Cópias de DNA , Feminino , Humanos , Janus Quinase 2/genética , Cariotipagem/métodos , Masculino , Pessoa de Meia-Idade , Receptores de Trombopoetina/genética
6.
Cytogenet Genome Res ; 148(2-3): 174-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27251740

RESUMO

Deletions in the short arm of chromosome 12 are the rarest subtelomeric imbalances. Less than 20 patients have been reported to date, and their microdeletions were identified either by FISH or array-CGH without SNP data. Here, we report a patient with a 12p13.32pter mosaic deletion detected by chromosome microarray analysis with loss of heterozygosity (LOH) of the deleted segment in addition to the adjacent distal segment. LOH is indicative of a complex rearrangement, suggestive of mitotic microhomology-mediated break-induced replication.


Assuntos
Perda de Heterozigosidade/genética , Mosaicismo , Criança , Pré-Escolar , Bandeamento Cromossômico , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Replicação do DNA , Face/anormalidades , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariótipo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...